# What is Inductive Reactance?

## What is Inductive Reactance?

Ohm’s Law is pretty straightforward; you multiply ohms by amps to get the voltage. Using variable *E *to represent voltage, variable *I *for amps, and variable *R *for ohms, the equation for Ohm’s Law looks like this:

**E = I × R**

You can figure out the number of amps in a system using basic algebra to turn this multiplication equation into a division one. Divide both sides by *R *to isolate the amperage (E/R = I). From there, you’d take the voltage reading and divide it by your ohm reading. Your equation should yield the amperage.

However, if you’ve tried doing that and then comparing your answer to the actual amperage measurement, you’ll know that there’s a lot less current than the equation would lead you to believe. Ohm’s Law appears to be inaccurate most of the time, and it’s a bit frustrating because there’s such an emphasis on it in electrical education, but it doesn’t seem to work in the field. Why do we even learn about it in the first place?

The truth is that Ohm’s Law is still valid and works just fine. It’s merely impractical for the alternating current (AC) systems we see. That’s because the ohms we measure don’t account for all resistance types that make up total impedance. *Inductive reactance* is one of those types of impedance, and our multimeters and ohmmeters can’t pick it up. It also happens to be a byproduct of the inductive loads we regularly use.

**Loads**

Maybe I’ve gotten a bit ahead of myself by tacking “inductive” onto words without explaining them. So, what is a load, anyway?

Simply put, a load is a component that *does something *in an electrical circuit. For example, a lightbulb is a load because it lights up when it receives power. In terms of the work we do, motors and transformers are loads that we regularly use.

There’s quite a difference between lightbulbs and motors or transformers. They each belong to different load categories; lightbulbs are resistive loads, while motors and transformers are inductive loads. Resistive loads have a heating component (toasters, oven coils, and electric heaters are also resistive loads), and inductive loads have an electromagnetic element. They also have different voltage-current sinusoidal waveforms, but that’s not particularly important right now.

We see plenty of inductive AC loads in the work we do. (AC refers to alternating current. Inductors don’t have a significant effect on DC circuits.) Inductive loads facilitate magnetism and (usually) movement.

Transformers are the exception to the movement rule. Transformers only transfer electric energy via electromagnetism and don’t have any moving parts. Still, the point stands that magnetism is the core trait of inductive loads.

**Electromagnetism**

I don’t want to dwell on electromagnetism for too long. Still, I think we should have a solid grasp of its fundamentals before we discuss inductive reactance.

When current travels through a wire, it will make a small magnetic field. It stands to reason that a coiled wire over a small area would create a larger, stronger magnetic field. After all, the current runs through the wire several times in the same small space. Most inductors are segments of coiled wires, though inductive loads have the same effect without necessarily having the coils.

The magnetic field expands as the current runs through the coil, and electrical energy accumulates as magnetic energy when the field is at its maximum size. When the current stops flowing, the field shrinks until it disappears entirely, returning all the stored energy to electric energy. It takes a bit of time to store and release the power, so you’ll always see a lag in the current.

**Magnetism vs. heat**

As we just explained, inductive loads hold their energy in magnetic fields. This energy storage method is why resistive loads heat up quickly, but inductive loads do not.

The magnetic field’s energy storage impedes the current. The current doesn’t travel from point A to point B in the circuit without experiencing that delay. The delay reduces the total power delivered, so inductive loads don’t heat up to the same degree as resistive loads.

On the other hand, voltage and current peak simultaneously in resistive loads, which allows all the power in the circuit to be delivered. Resistive loads heat up much more quickly because their circuits don’t have the same delay as inductive load circuits. That’s why solenoids, relay coils, and motors don’t act as heaters that overload constantly.

A resistive oven coil and an inductive relay coil receive power in different doses because of their circuit designs, explaining why one heats up quickly while the other doesn’t. That’s why motors, solenoids, and relay coils don’t act as little heaters that constantly overload.

**Reactance and impedance**

Reactance is a component’s opposition to the current flow, just like the lag we talked about in the previous sections. As this description suggests, reactance is a form of resistance.

Reactance is a type of resistance called impedance. (Remember when I said that the energy storage delay *impedes* the current?) As such, inductive reactance is impedance from inductive loads. Although lightbulbs and other resistive loads present some form of resistance while operating, the resistance from inductive loads is significantly higher.

The total impedance is a combination of reactance and resistive ohms, so they both make up the total number of ohms.

Like other sources of resistance, we measure reactance in ohms. However, as I said earlier, you can only use your multimeter or ohmmeter to measure resistive ohms. Those devices don’t measure reactance, and there’s no way you can measure inductive reactance beforehand. As a result, Ohm’s Law doesn’t directly apply to many electrical components in our work.

The wiring of our electrical components dictates the resistance and impedance within them. The wires’ winding affects the behavior of inductive reactance, ohmic resistance, and current, as you’ll read shortly.

**Inductive reactance and current**

You may have noticed that motors draw higher current upon startup. Many people call this the inrush current, which can be several times stronger than the standard running current.

The current is strongest at the start because it takes a little bit of time for the impedance to push back against the current resistance. That usually happens after the motor starts spinning. However, once the inductive reactance has established itself, it strongly resists the current and reduces the amperage as a result.

If you use Ohm’s Law to find the amperage and yield a number that’s much higher than your ohmmeter’s reading, that’s because you haven’t accounted for the effect that inductive reactance has on current. Again, inductive reactance won’t show up on ohmage readings, but it still impedes the amperage and results in a much lower amperage reading than expected.

**Winding: inductive reactance and transformers**

We’ve already established that transformers are the odd ones out because they lack moving parts. Instead, transformers transfer electrical energy from one circuit to another via electromagnetic induction.

Transformers have two sets of windings: primary and secondary. The primary winding connects directly to the AC supply, and the secondary winding connects to the load (output terminal). A magnetic core binds the primary and secondary winding.

When a transformer has no load on the secondary winding, it draws almost no current on the primary winding. That’s because the impedance on the secondary winding is extremely high, and it becomes a near-perfect inductor when there is no load.

Did we really go through all this information just to prove that Ohm’s Law is not a sham? Absolutely. Our ohmmeters and multimeters only give us part of the picture, and it’s unfair (and inaccurate) to judge the validity of Ohm’s Law with our limited measurements.

As you can see, the electrical world is complicated, and there’s a lot more to resistance than the ohms we can measure with our devices. Just remember that the amps don’t magically disappear; they get impeded by inductive reactance.